
Chapter-3 

Wire Antennas 
      

1. Introduction 
     In Chapter-2, we have just indicated that a short dipole antenna is not a good radiator 

of electromagnetic power because of its low radiation resistance and low radiation 

efficiency. We now examine the radiation characteristics of a center-fed thin straight 

antenna having a length comparable to a wavelength, as shown in Fig.5. Such an antenna 

is a linear dipole antenna. If the current distribution along the antenna is known, we can 

find its radiation field by integrating over the entire length of the antenna the radiation 

field due to an elemental dipole. The determination of the exact current distribution on 

such a seemingly simple geometrical configuration (a straight wire of a finite radius) is, 

however, a very difficult boundary-value problem even if the wire is assumed to be 

perfectly conducting. The current must be zero at the ends of the wire where charges are 

deposited, and the tangential electric field due to all currents and charges must vanish at 

every point on the wire surface. An analytical formulation of the problem leads to an 

integral equation in which the current distribution along the antenna is the unknown 

function under the integral. Unfortunately, an exact solution of the integral equation does 

not exist. Various approximate solutions have been attempted. With the advent of high-

speed digital computers, numerical solutions for current distributions and input 

impedances can be obtained for linear antennas of specific lengths and thicknesses. The 

ratio of the voltage and the current at the feed points is the input impedance. Both the 

solution procedure and the numerical results are quite involved, and we shall not delve 

into them in this chapter. For our purposes the knowledge of the exact current distribution 

on the linear antenna is not of prime importance; a good estimate will give us 

considerable useful information on the radiation characteristics of the antenna. We 



assume a sinusoidal current distribution on a very thin, straight dipole. Such a current 

distribution constitutes a kind of standing wave over the dipole and represents a good 

approximation. 

 

 
Fig.5: A center-fed linear dipole with sinusoidal current distribution 

 

     Since the dipole is center-driven, the currents on the two halves of the dipole are 

symmetrical and go to zero at the ends. We write the current phasor as 

 

 
 

 

We are interested only in the far-zone fields. The far-field contribution from the differ-

ential current element Idz is, from Eqs.(19a,b), 

…. (51) 

 



  
Now R' in Eq.(52) is slightly different from R measured to the origin of the spherical 

coordinates, which coincides with the center of the dipole. In the far zone, R >> h, 

  
 The magnitude difference between 1/R' and 1/R is insignificant, but the approximate 

relation in Eq.(53) must be retained in the phase term. Using Eqs.(51) and (53) in Eq. 

(52) and integrating, we have 

 
The integrand in Eq. (54) is the product of an even function of z, sin β(h — |z|), and 

 
where sin(βz cosθ) is an odd function of z. Integrating between symmetrical limits -h and 

h, we find that only the part of the integrand containing the product sin β(h — |z|)cos(βz  

cosθ)  does not vanish. Equation (54) then reduces to 

 
where 

 

…. (52) 

 

…. (53) 

 

…. (54) 

 

…. (55) 

 

…. (56) 

 



The factor |F(θ)| is the E-plane pattern function of a linear dipole antenna. It describes 

the radiation pattern or the variation of the normalized far field, |Eθ|, versus the angle θ. 

The exact shape of the radiation pattern represented by |F(θ)| in Eq. (56) depends on the 

value of βh=2πh/λ  and can be quite different for different antenna lengths. The radiation 

pattern, however, is always symmetrical with respect to the θ=π/2 plane. Figure-6 shows 

the E-plane patterns for four different dipole lengths measured in terms of wavelength: 

2h/λ = 1/2, 1, 3/2 and 2. The H-plane patterns are circles inasmuch as F(θ) is 

independent of ϕ. From the patterns in Fig.6, we see that the direction of maximum 

radiation tends to shift away from the θ = 90° plane when the dipole length approaches 

3λ/2. For 2h = 2λ there is no radiation in the θ = 90° plane. 

 
 

Fig.6: E-plane radiation pattern for center-fed dipole antenna 



2. The Half-Wave Dipole 
     The half-wave dipole having a length 2h = λ/2 is of particular practical importance 

because of its desirable pattern and impedance characteristics. We shall now examine its 

properties in more detail. 

     For a half-wave dipole, βh = 2πh/λ = π/2, the pattern function in Eq. (56) becomes 

 
This function has a maximum equal to unity at θ = 90° and has nulls at θ = 0° and 180°. 

The corresponding E-plane radiation pattern is sketched in Fig.6(a). The far-zone field 

phasors are, from Eq. (55), 

 

 
The magnitude of the time-average Poynting vector is 

 
The total power radiated by a half-wave dipole is obtained by integrating over the surface 

of a great sphere: 

 
The integral in Eq. (61) can be evaluated numerically to give a value of 1.218. Hence: 

…. (57) 

 

…. (58) 
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…. (60) 

 

…. (61) 

 



  
from which we obtain the radiation resistance of a free-standing half-wave dipole: 

  
Neglecting losses, we find that the input resistance of a thin half-wave dipole equals 73.1 

(Ω) and that the input reactance is a small positive number that can be made to vanish 

when the dipole length is adjusted to be slightly shorter than λ/2. (As we have indicated 

before, the actual calculation of the input impedance is tedious and is beyond the scope of 

this chapter.) 

The directivity of a half-wave dipole can be found by using Eq. (35). We have, from Eqs. 

(32) and (60), 

  
and 

 
which corresponds to [101og10 1.64] or [2.15 (dB)] referring to an omnidirectional 

radiator. 

     The half-power beamwidth of the radiation pattern is the angle between the two 

solutions of the equation 

 
which can be solved either numerically or graphically to give a beamwidth of 78°. Thus a 

half-wave dipole is only slightly more directive than a short Hertzian dipole that has a 

directivity of 1.76 (dB) and a beamwidth of 90°. 

…. (62) 

 

…. (63) 

 

…. (64) 

 

…. (65) 

 



 

3. Thin λ/4 Monopole over a conducting Ground 
     Since current is charge in motion, we can use the method of images and replace the 

conducting ground by the image of the vertical antenna. A little thought will convince us 

that the image of a vertical antenna carrying a current I is another vertical antenna. The 

image antenna has the same length, is equidistant from the ground, and carries the same 

current in the same direction as the original antenna. The electromagnetic field in the 

upper half-space due to the quarter-wave vertical antenna in Fig.7(a) is, then, the same as 

that of the half-wave antenna in Fig.7(b). The pattern function in Eq. (57) applies here for 

0 ≤ θ ≤ π/2, and the radiation pattern drawn in dashed lines in Fig.7(b) is the upper half of 

that in Fig.6(a). 

 
Fig.7: Quarter-wave monopole over a conducting ground and its equivalent half-wave 

dipole. 

 



     The magnitude of the time-average Poynting vector, 8Pav, in Eq. (60), holds for 0 ≤ θ 

≤ π/2. Inasmuch as the quarter-wave antenna (a monopole) radiates only into the upper 

half-space, its total radiated power is only one-half that given in Eq. (62): 

 
Consequently, the radiation resistance is 

 
which is one-half of the radiation resistance of a half-wave antenna in free-space. 

     To calculate directivity, we note that although the maximum radiation intensity Umax 

remains the same as that given in Eq. (64), the average radiation intensity is now Pr /2π. 

Thus, 

  
which is the same as the directivity of a half-wave antenna.  

 

4. Effective Antenna Length 
     For thin linear antennas with a given current distribution it is sometimes convenient to 

define a quantity called the effective length, to which the far-zone field is proportional. 

Let us refer to the dipole antenna in Fig.5 and assume a general phasor current 

distribution I(z). The far-zone field is then, from Eq. (54), 

  
Let I(0) be the input current at the feed point of the antenna. We write Eq. (68) as 

…. (66) 

 

…. (67) 

 

…. (68) 

 



  
where 

 
is the effective length of the transmitting antenna. (We will discuss the effective length of 

a receiving antenna presently.) As we see from Eq. (69), le measures the effectiveness of 

the antenna as a radiator, and for a given current distribution the far-zone field is 

proportional to le , which contains all the information about the directional properties of 

the antenna. In most practical situations the important value of the effective length is that 

at θ = π/2, where 

 
Equation (71) indicates that le is the length of an equivalent linear antenna with a uniform 

current I(0) such that it radiates the same far-zone field in the θ = π/2 plane. 

 

EXAMPLE-5 Assume a sinusoidal current distribution on a center-fed, thin, straight 

half-wave dipole. Find its effective length. What is its maximum value? 

Solution: For the assumed sinusoidal current distribution we use Eq. (51) for I(z) and 

substitute it in Eq. (70), where I(0) = Im  and  h = λ/4. We have 

 
The above integral has been evaluated in Eq. (56). Thus, 

…. (69) 
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The maximum value of le (θ) is at θ = π/2, where the effective length is 

 
We note from Eq. (74) that the maximum effective length of a half-wave dipole is less 

than its physical length  λ/2. 

     A careful examination of Eq. (71) reveals a potential anomaly in the appearance of 

1(0) in the denominator. When the half-length of a dipole is greater than λ/4 and 

approaches λ/2, I(0) would be progressively less than Im , which would not occur at z = 0. 

This could make le  much greater than 2h. Thus the definition of effective length as given 

in Eqs.(70) and (71) is meaningful only for relatively short antennas that have a current 

maximum at the feed point. 

The effective length of a receiving linear antenna is defined as the ratio of the open-

circuit voltage Voc induced at the antenna terminals and the electric field intensity Ei = |Ei| 

at the antenna that induces it: 

 
where the negative sign is to conform with the convention that the electric potential 

increases in a direction opposite to that of the electric field. The situation is illustrated in 

Fig.8. We will assume that Ei , lies in the plane of incidence, since the component of Ei , 

normal to the antenna does not induce a voltage across the antenna terminals. Obviously, 

the open-circuit voltage Voc depends on Ei θ, and βh in a complicated way. It is possible 

…. (73) 
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…. (75) 

 



to use a reciprocity theorem to prove formally that the effective length of an antenna for 

receiving is the same as that for transmitting.  

     If the incoming electric field Ei is not parallel to the dipole, there is a polarization 

mismatch, and the magnitude of the open-circuit voltage will be 

 
where le denotes the vector effective length. Obviously, | Voc |  will be maximum when Ei 

is parallel to the dipole and will be zero if  Ei  is perpendicular to the dipole. 
 

 
 

Fig.8: A linear antenna in the receiving mode. 
 

 

…. (76) 

 


